Host-based Anomaly Detection Using Wrapping
File Systems *

Shlomo Hershkop, Linh H. Bui, Ryan Ferster, and Salvatore J. Stolfo

Columbia University, New York, NY 10027, USA
<shlomo,1hb2001,r1f92, sal>@cs.columbia.edu

Abstract. We describe an anomaly detector, called FWRAP, for a Host-
based Intrusion Detection System that monitors file system calls to detect
anomalous accesses. The system is intended to be used not as a stan-
dalone detector but one of a correlated set of host-based sensors. The
detector has two parts, a sensor that audits file systems accesses, and
an unsupervised machine learning system that computes normal models
of those accesses.We report on the architecture of the file system sen-
sor implemented on Linux using the FiST file wrapper technology and
results of the anomaly detector applied to experimental data acquired
from this sensor. FWRAP employs the Probabilistic Anomaly Detection
(PAD) algorithm previously reported in our work on Windows Registry
Anomaly Detection. The detector is first trained by operating the host
computer for some amount of time and a model specific to the target
machine is automatically computed by PAD, intended to be deployed to
a real-time detector. In this paper we describe the feature set used to
model file system accesses, and the performance results of a set of exper-
iments using the sensor while attacking a Linux host with a variety of
malware exploits. The PAD detector achieved impressive detection rates
in some cases over 95% and about a 2% false positive rate when alarming
on anomalous processes.

Keywords: Host-Based, Anomaly Detection, File System, Wrapping

1 Introduction

Some approaches to host-based anomaly detection have focused on monitoring
the operating system’s (OS) processes during program execution and alerting on
anomalous sequences of system calls. For example, OS wrappers monitor each
system call or DLL application and test a set of rules for ”consistent” program
execution [2,8,11]. This presumes that a program’s legitimate system call exe-
cution can be specified correctly by a set of predefined rules. Alternatively, some
have implemented machine learning techniques that model sequences of nor-
mal execution traces and thus detect run time anomalies that exhibit abnormal
execution traces [5,14].

* This work has been supported in part by a contract from DARPA, Application-layer
IDS, Contract No. F30602-00-1-0603.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2004 2. REPORT TYPE 00-00-2004 to 00-00-2004
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Host-based Anomaly Detection Using Wrapping File Systems £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Columbia University,Department of Computer Science,500 West 120th REPORT NUMBER
Street,New York,NY,10027

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 20
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Anomaly Detection is an important alternative detection methodology that
has the advantage of defending against new threats not detectable by signature
based systems. In general, anomaly detectors build a description of normal
activity, by training a model of a system under typical operation, and compare
the normal model at run time to detect deviations of interest. Anomaly Detectors
may be used over any audit source to both train and test for deviations from
the norm.

There are several important advantages to auditing at the OS level. This
approach may provide broad coverage and generality; for a given target platform
it may have wide applicability to detect a variety of malicious applications that
may run on that platform.

However, there are several disadvantages to anomaly detection at the OS
monitoring level. Performance (tracing and analyzing system calls) is not cheap;
there is a substantial overhead for running these systems, even if architected
to be as lightweight as possible. Second, the adaptability and extensibility of
these systems complicates their use as updates or patches to a platform may
necessitate a complete retraining of the OS trace models.

Furthermore, OS system call tracing and anomaly detection may have an-
other serious deficiency; they may suffer from mimicry attack [16], since the
target platform is widely available for study by attackers to generate exploits
that appear normal when executed.

We have taken an alternative view of host-based anomaly detection. Anoma-
lous process executions (possibly those that are malicious) may be detected by
monitoring the trace of events as they appear on attempts to alter or damage
the machine’s permanent store. Thus, a malicious attack that alters only run-
time memory would not necessarily be detected by this monitor, while the vast
majority of malicious attacks which do result in changes to the permanent store
of the host might leave a trace of anomalous file system events. In this case, the
two very important host based systems to defend and protect are the Registry
(in Window’s case) and the file system (in both Window’s and Unix cases).

The Windows Registry Anomaly Detector [1], (RAD), monitors each Win-
dows registry [12] query, and builds a model of normal registry use. This baseline
model is then used at run-time to detect errant or abnormal registry accesses
indicative of malicious program executions, either purposeful changes to that
registry to harm a system, or to identify information about the target of the
malicious exploit. In either case, the Registry is an important central source of
information of interest to malicious program execution.

In the case of Unix platforms there is no central registry to monitor so we
focus the auditing on the underlying file system. The file system is the core per-
manent store of the host and any malicious execution intended to damage a host
will ultimately set its sights upon the file system. A typical user or application
will not behave in the same manner as a malicious exploit, and hence the behav-
ior of a malicious exploit is likely able to be detected as an unusual or unlikely
set of file system accesses.

The File Wrapper Anomaly Detection System (FWRAP) is a host-based
anomaly detector that utilizes file wrapper technology to monitor file system
accesses. It is the counterpart of RegBam (the registry wrapper) developed
for RAD for auditing the Windows registry. The file wrappers implemented
in FWRAP are based upon work described in [17] and operate in much the
same fashion as the wrapper technology described in [8,2]. The wrappers are
implemented to extract a set of information about each file access including, for
example, date and time of access, host, UID, PID, and filename, etc. Each such
file access thus generates a record describing that access. Each record encodes a
set of feature values that describe the processes, the file and directory, and the
file characteristics. Intuitively, these records provide the same type of informa-
tion associated with a Windows Registry access, and as such can be modeled in
the same fashion.

Our initial focus here is to regard the set of file system access records as a
database, and to model the likely records in this database. Hence, any record an-
alyzed during detection time is tested to determine whether it is consistent with
the database of training records. This modeling is performed by the Probabilistic
Anomaly Detection algorithm (PAD) introduced in our work on the Windows
registry. The PAD algorithm inspects feature values in its training data set, and
estimates the probability of occurrence of each value using a Bayesian estima-
tion technique. PAD estimates a full conditional probability mass function and
thus estimates the relative probability of a feature value conditioned on other
feature values and the expected frequency of occurrence of each feature. One of
the strengths of the PAD algorithm is that it also models the likelihood of seeing
new feature values at run-time that it may not have encountered during training.
We assume that normal events will occur quite frequently, and abnormal events
will occur with some very low probability.

In this work, we apply PAD to model file access data, merged with infor-
mation about the running processes that invoke such accesses. We report on
experiments using alternative threshold logic that governs whether the detector
generates an alarm or not depending upon the scores computed by PAD,and
as well the number of alerts generated by a distinct process. We compare the
accuracy of the detector for the cases where one anomalous record is generated
by a process, and an alternative strategy that raises an alarm when some per-
centage of records created by a process are deemed anomalous. We first provide
the details of the wrapper technology employed in FWRAP and the data and
features extracted during a file access.

The rest of the paper is organized as follows. Section 2 discusses the architec-
ture of the FWRAP system. We describe previous work and what we have added
to the FiST system. Section 3 discusses the experimental setup while section 4
presents the results and discusses our findings. Section 5 describes the open
problems in anomaly detection research and how this work can be extended.

2 FWRAP System Architecture

Previous work by Zadok [17,18,20] proposed a mountable file system for Unix
and Windows which would allow additional extensions to the underlying op-
erating system without having to modify kernel level functionality. The FiST
technology developed in that work has been extended to provide a security mech-
anism via file system auditing modules. We implemented a FiST audit module
that forms the basis of the FWRAP audit sensor.

FWRAP represents one of several different types of sensors that one may
deploy and correlate on a monitored host system. The correlation of multiple
host-based sensors is beyond the scope of this paper. (See [22] for details of this
approach, and a broader set of prior work dealing with network-based sensor
correlation such as [23]).

Figure 1 illustrates the architecture that we developed as a standalone real
time application on a single Linux host.

PAD Detector

Alerts v A Records

o
L
T W
)

Alerts wrapsfs read() VOP_READ() v

WRAPFS)~ VNODE LAYER
NFS_READ()
Underlying FS

DISK_DEV_READ() * ‘

Fig. 1. The Architecture of FWRAP IDS

KERNEL

2.1 Requirements

Several requirements drove the design of the FWRAP system. The file system
sensor had to be lightweight, easily portable to different systems, and complete,
in the sense that it is able to monitor all file system accesses without loss of
information. Perhaps the most important requirement is that the system must
be transparent to the user.

Lightweight vs Portability There are two types of file systems we are con-
cerned with; native (kernel-level) and user-level. Requiring a lightweight file sys-
tem sensor that is also part of the file system implies that it should be a native

file system. Native files systems, such as ext2 and fat32, are relatively fast due
to the fact that they are kernel-level. However, building or modifying native
file systems usually requires recompiling parts of the kernel, which may not be
readily available for some platforms, nor appreciated by end users.

User-level file systems, on the other hand, do not need a kernel compile, but
they do suffer from slower speed, due mostly to context switches from kernel to
user levels. A third type of file system, kernel-resident stackable file systems, the
subject matter of the research in [19], attempts to combine the speed of native
file systems with the ease of use of a user-level file system. This was accomplished
through the Vnode Interface.

2.2 Vnode

A Vnode is a pointer to a file system entity and serves as a file system ”wrapper”,
providing an interface to an underlying file system implementation. Calls to the
Vnode are not file system specific. Hence, a process that uses a Vnode has no
knowledge of the underlying file system implementation, only an interface to
that file system. Additionally, it is possible to ”stack” Vnodes on top of each
other. This concept was first proposed by Rosenthal [13].

Each stacked Vnode thus accesses the Vnode beneath it as if it were accessing
a single Vnode. This leaves the user free from worry about the specifics of the
underlying file system and allows him/her to concentrate on the customizations
on the file system accesses provided by each Vnode implementation. Since it is
kernel-resident, the customized file system will run only slightly slower than a
native file system and much faster than a user-level file-system [17].

2.3 FiST

FiST [18] is a high level language designed by Erez Zadok in his thesis research
to aid the development of kernel-resident stackable file systems. Fistgen is an
executable included with FiST that generates C code from FiST code. The C
code is then compiled and inserted as a module. At this point, the new file system
is ready to be mounted. The advantage of using a high level language like FiST
is that a user does not need to worry about the underlying details of the file
system he is modifying; he only needs to describe it in FiST. Additionally, FiST
code is very easily ported between different systems [18].

Finally, FiST can produce layering which allow fan-in and fan-out of mount
points. Fan-out is useful for load balancing, as well as replicating mount points.
Fan-in is useful to directly access lower level mount points, without going through
the intermediary file system [19]. In our work, we wrote FiST modules for au-
diting file accesses for use by FWRAP. This was accomplished by modifying an
existing wrapper implemented in FiST called Snoopfs.

Snoopfs Snoopfs is file system described by the FiST language and included
in the FiST package. Snoopfs checks if any non-root user or file owner receives

a “permission denied” or “file not found” error. If so, it sends a message to the
kernel logger. In our implementation we removed all of the conditionals from
Snoopfs and forced it to send all file accesses to the the kernel logger, which we
redirect to a file similar to what is described in [20]. We did this by modifying
the FiST file which describes the snoopfs file system, and then translating the
FiST file to snoopfs.c. Once compiled, the kernel module snoopfs.o was loaded
at runtime as a Linux kernel module (using insmod) and the directories were
mounted.

One feature of stacking is that the underlying mount point is generally di-
rectly accessible. This feature could be thwarted by a malicious user or program
by simply directly accessing the underlying file system and avoiding the wrapper
and file system logging. We addressed this security concern by limiting access to
the underlying mount point by using an “overlay mount”. This mount does not
allow direct access [20] to the underlying file system. All file-system accesses are
thus forced to go through the mount point, forcing the access logging.

2.4 Data Storage

Once all subsystem file accesses are logged in this fashion, its a straightforward
matter to provide the means of reading from the log, formatting the data and
sending it to the PAD module for analysis. A typical snippet of a line of text
sent to the kernel logger by the Snoopfs file system is

Mar 9 19:03:14 zeno kermel:
snoopfs detected access by uid 0, pid 1010, to file cat

This record was generated when the root user accesses a file named ’cat’ on
a machine named ’zeno’. We modified a C program to format this data for PAD
exemplified by the following (partial) record.

<rec><Month str>Mar</Month><Day i>9</Day>
<Time str>19:03:14</Time>

<IP str>zeno</IP><UID i>0</UID>

<PID i>1010</PID><File str>cat</File></rec>

2.5 PAD Detector

The data gathered by monitoring each file access is a rich set of information that
describes in great detail a single file access. Each piece of information may be
regarded as a “feature” and hence each record is treated as a feature vector used
by PAD for training a normal model that describes normal file accesses.

PAD models each feature and pairs of features as a conditional probability. A
single feature produces a “first order consistency check” that scores the likelihood
of observing a feature value at run time. PAD also models the likelihood of
observing a new feature value at run-time that was not observed during training.
Second order consistency checks score the likelihood of a particular feature value

conditioned on a second feature. Thus, given n features in a training record,
PAD generates n first order consistency checks, and n * n — 1 second order
consistency checks. Although it is possible to use higher order consistency checks,
the computational overhead and space constraints make it infeasible for the
current implementation of PAD.

The feature vector available by auditing file accesses has 18 fields of informa-
tion, some of which may not have any value in describing or predicting a normal
file access. For example, one such feature may be the process identifier, PID, as-
sociated with the file access. PID’s are arbitrarily assigned by the underlying OS
and in and of themselves have no intrinsic value as a predictor of a file access. As
an expediency such fields may be dropped from the model. Only 7 features are
used in the experiments reported in this paper as detailed in the next section.

After training a model of normal file accesses using the PAD algorithm the
resultant model is then used at runtime to detect abnormal file accesses. The
PAD detector is shown in Figure 1. Each file access is monitored by FiST, a
record is encapsulated and provided to the PAD detector, and an alert is gen-
erated if the normal model deems the access is abnormal (or some number of
accesses generated by a single process). Alerts are generated via threshold logic
on the PAD computed scores.

As shown in Figure 1 the detector runs on the user level as a background
process. Having it run on the user level can also provide additional protection of
the system as the sensor can be hard-coded to detect when it is the subject of a
process that aims to kill its execution, or to read or write its files. (Self-protection
mechanisms for FWRAP are beyond the scope of this paper.)

2.6 FWRAP Features

The FWRAP data model consists of 7 features extracted or derived from the
audit data provided by the FWRAP sensor.

Several of the features describe intrinsic values of the file access, for example,
the name of the file, and the user id. We also encode information about the
characteristics of the file involved in the access, specifically the frequency of
touching the file. This information is discretized into a few categories rather
than represented as a continuous valued feature. We generally follow a strategy
suggested by the Windows OS. Within the add/change applications function of
control panel in Windows, the frequency of use of an application is characterized
as "frequently”, ”sometimes” and "rarely”. Since it is our aim to port FWRAP to
Windows (exploiting whatever native information Windows may provide and to
correlate FWRAP with RAD), we decided in this experimental implementation
of FWRAP on Linux to follow the same principle for the Unix file system but
with a slightly finer level of granularity than suggested by Windows. Hence, we
measured file accesses over a trace for several days, and discretized the frequency
of use of a file into the four categories as described below.

The entire set of features used by in this study to model file system accesses
are as follows:

UID This is the user ID running the process

WD the working directory of a user running the process

CMD This is the command line invoking the running process

DIR This is the parent directory of the touched file.

FILE This is the name of the file being accessed. This allows our algorithm to
locate files that are often or not often accessed in the training data. Many
files are accessed only once for special situations like system or application
installation. Some of these files can be changed during an exploit.

PRE-FILE This is the concatenation of the three previous accessed files. This
feature codes information about the sequence of accessed files of normal
activities such as log in, Netscape, statx, etc. For example, a login process
typically follows a sequence of accessed files such as .inputrc, .tcshre, .history,
Jlogin, .cshdirs, etc.

FREQUENCY This feature encodes the access frequency of files in the train-
ing records. This value is estimated from the training data and discretized
into four categories:

1. NEVER (for processes that don’t touch any file)

2. FEW (where a file had been accessed only once or twice)

3. SOME (where a file had been accessed about 3 to 10 times)

4. OFTEN (more than SOME).
Alternative discretization of course are possible. We computed the standard
deviations from the average frequency of access files from all user processes
in the training records to define the category ranges. An access frequency
falls into the range of FEW or OFTEN categories often occurs for a file
touched by the kernel or a background process.

Examples of typical records gathered from the sensors with these 7 features
are:

500 /home/linhbui login /bin dc2xx10
725-705-cmdline Some 1205,Normal

500 /home/linhbui kmod /Linux_Attack kmod
1025-0.3544951178-0.8895221054 Never 1253,Malicious

The last items (eg., “1253,Malicious) are tab separated from the feature
values and represent an optional comment, here used to encode ground truth used
in evaluating performance of the detector. The first record with pid=1205 was
generated from a normal user activity. The second was captured from an attack
running the kmod program to gain root access. The distinction is represented
by the labels "normal” and "malicious”. These labels are not used by the PAD
algorithm. They exist solely for testing performance of the computed models.

Another malicious record is

0 /home/linhbui sh /bin su meminfo-debug-insmod Some
1254,Malicious

This record illustrates the results of an intruder who gained root access. The
working directory (WD) is still at /home/linhbui but the UID now has changed
to 0. A record of this nature ought to be a low probability event.

3 Experiments

We deployed the FWRAP audit sensor on a “target host” machine in our lab
environment, an Intel Celeron 800MHz PC with 256 RAM, running Linux 2.4
with an ext2 file-system. The data gathered by the sensor was logged and used
for experimental evaluation on a separate machine. The latter test machine is
far faster and provided the means of running multiple experiments to measure
accuracy and performance of the PAD implementation. The target host was part
of a Test Network Environment which allowed us to run controlled executions
of malicious programs without worrying about noise from outside the network
corrupting our tests, nor inadvertently allowing leakage of an attack to other sys-
tems. Data was not gathered from a simulator, but rather from runtime behavior
of a set of users on the target machine.

We collected data from the target host for training over 5 days of normal
usage from a group of 5 users. Each user used the machine for their work, logging
in, editing some files on terminal, checking email, browsing some website, etc.
The root user performed some system maintenance as well as routine sysadmin
tasks.

The logged data resulted in a data set of 275,666 records of 23 megabytes
which we used to build a PAD model on the other “test machine”. This model
will be referred to as the “clean model”, although we note that PAD can tolerate
some level of noise. The size of the model was 486 megabytes prior to any pruning
and compression. We address the size of the models computed by PAD in the
concluding section.

Once the model was computed, one of the users on the target machine volun-
teered to be the “Attacker”, who then used the target machine for 3 experiments
each lasting from 1 to 3 hours. The malicious user ran the exploits from their
home account. These exploits are publicly available on the Internet. The user
was asked to act maliciously and to gain root privileges using the attack ex-
ploits on hand. Once root control was acquired, the user further misused the
host by executing programs which placed back-doors in the system. The system
was monitored while the attacks were run. The resultant monitoring produced
records from the FWRAP sensors. These records were then tested and scored
by the PAD model.

The PAD analysis was run on the test machine, a dual processor 1500 MHz
with 2GB of ram. The total time to build the model of the 23 MB of training data
was three minutes, with memory usage at 14%. Once, the model was created,
we ran the model against the test data from the 3 experiments, while varying
the thresholds to generate a ROC curve. Each detection process took 15 seconds
with 40% of CPU usage and 14% of memory.

These performance statistics were measured on the test machine, not on
the target host where the data was gathered. This experimental version was
implemented to test the efficacy of the approach and has not been optimized for
high efficiency and minimal resource consumption for deployment on the target
machine. Even so, the analysis of the computational performance of the sensor
measured during the experiments indicates that although training the model is

10

resource intensive, run-time detection is far less expensive. A far more efficient
professionally engineered version of FWRAP would reduce resource consumption
considerably. That effort would make sense only if the sensor achieves the goal
of detecting anomalous events indicative of a security breach.

It should be noted that the RAD sensor/detector using PAD running on
Windows has been upgraded to run exceptionally fast, with a very small amount
of memory and CPU footprint. For the current Windows implementation of PAD
the 23 MB file can train the model in about 12 seconds at 95% CPU time on a
Celeron 2 GHZ machine.

The initial implementation of the PAD algorithm on windows for the RAD
sensor consumed 18 MB to store the PAD model trained on 23 MB of data.
The re-engineered implementation now requires less than 1 MB and the run-
time detector consumes at most 5% of CPU, barely discernible. This newer
implementation of PAD is being ported to Linux so that FWRAP will also
be far more efficient than the present prototype reported in this paper. The
version reported here is the first proof of concept implementation without the
performance enhancements implemented on the Windows platform.

3.1 Description of Attacks

We used three different exploits and three Trojan programs during the 3 exper-
iments to measure how well the PAD algorithm could discern malicious attacks
from normal file accesses.

Two of the attacks, ptrace-kmod and kmod, exploit the same weakness in
Linux 2.2 and 2.4 (see http://www.securitybugware.org/Linux/6072.html). The
weakness is root-exploitable because of how the kernel handles module features.
A bug in the kernel module loader code could allow a local user to gain root
privileges. When a kernel feature is needed in a process, the kernel spawns a new
modprobe process with euid and egid set to 0. Ptrace() can then immediately be
used to attach to the new process and run arbitrary code with root access. The
exploits use this vulnerability to run a root shell (in somewhat different ways).

The third attack is a Kanji emulator for the console. It exploits the buffer
overflow vulnerability in the command line parsing code portion of the kon pro-
gram up to and including Linux version 0.3.9b. This vulnerability, once appro-
priately exploited, leads to local users being able to gain elevated root privileges.
kon2root is the kon buffer overflow code to attack Red Hat Linux.

Once root access is attained, an attacker would use backdoor programs to
remotely control the target computer without giving away the compromised state
of the machine.

The first backdoor, audpbackdoor, is a client/server software program written
in Perl. Once attackers gain root control, they execute the server with root access.
It will then open port 520 by default for a remote client to connect to the target
machine. The client will then have root access.

The second backdoor, blackhole, provides remote access with the access rights
of the user that executed it. Therefore, once attackers execute it from root after

11

compromising the system, they can telnet to the system on an open port set up
by blackhole to have root privileges.

The third backdoor is a simple script to gain root privileges after the user with
uid/gid 0 (root) logs in. All it does is make the file "touch” called /tmp/mcliZokhb,
and either copy /bin/sh to /tmp/mclzaKmfa, or use Trojan to make a secure
password protected shell. These files act like a password. The bash script will
set /tmp/mclzaKmfa suid (4+s) when /tmp/mcliZokhb exists.

Other than trojan and root exploits, to hide any record of their existence,
as well as set up an easy way to remotely control the target computer without
giving away the compromised state of the machine, a rootkit is usually used. We
used the t0rn rootkit, which is a pre-compiled rootkit widely available online.
tOrn contains binary versions of the following tools:

/usr/bin/du /usr/bin/find /sbin/ifconfig
/bin/login /bin/ls /bin/netstat
/bin/ps /usr/bin/sz /usr/bin/top

These tools are actually hacked and hide any evidence that the machine
is compromised. Since it is assumed the rootkit is installed on a compromised
machine, it copies these files to their ’correct default’ location, hence they will
be in the PATH. TOrn also copies some of its files into /usr/src/.puta, and starts
a sshd to allow the attacker to reconnect to the machine.

4 Results

This section describes the results of the experiments. The PAD algorithm evalu-
ates each record output by the sensor by comparing the PAD score to a threshold
value. We recorded the detection rate and false positive rate of the detector over
the test records by varying the threshold for the consistency scores and plot
ROC curves of the results.

We ran the test data against the trained PAD model, producing 49 scores for
each consistency check for each record (7 first order + 7x6 second order). The
minimum score over all consistency checks is then tested against the threshold.
If the minimum score is below the threshold, an alert is generated.

An example of the PAD output with threshold = 0.1 is as follows:

0 /home/linhbui sh /bin su meminfo-debug-insmod Some :

8.873115 8.39732 7.69225 4.057663 0.485905 0.323076 6.527675 8.34453 7.464175 3.727299
0.0 0.0 5.971592 8.344 7.464175 3.727299 0.0 0.0 5.79384 7.45713 7.454335 4.060443 0.0
0.0 4.97851 3.732753 3.723643 4.039242 0.0 0.0 3.982627 0.458721 0.371057 0.439515
0.14842 0.0 0.221132 0.302689 0.20546 0.258604 0.090151 0.0 0.067373 5.978326 5.81323
5.015466 4.060443 0.0 0.0 : 1254, Malicious : 11,12,17,18,23,24,29,30,36,42,48,49

The sequence of numbers appearing at the end displays which consistency
checks are below the threshold. We inspected these for each record marked as an
anomaly. We learned that the features UID, FILE and FREQUENCY are the
most important predictors. We call these critical features. Most inconsistency
scores (i.e scores below the threshold) are generated by the inconsistent value

12

of critical features (i.e. first order consistency check) or from the conditional
features (i.e. second order consistency checks) involving these features.

These three features are quite sensible. The user identity associated with a
certain type of file generated anomaly alerts. (These are not the only alerts that
were generated.) This suggests that FWRAP not only may detect anomalous
file system accesses generated by malware execution, but it may also be useful
as a detector of masqueraders and insider abusers [24-26]. Hence, FWRAP may
provide evidence of these other nefarious activities.

We generated and display in the accompanying figures detection rates and
false positive rates on both a per record and per process basis. The strategy here
is that an otherwise non-malicious process may generate some abnormal file
accesses, insufficient in number to alarm on the process. Hence, the per process
scoring is based on measuring the number of records generated by a process at
run-time until some critical number of such alerts are generated by PAD.

In real time operation of FWRAP the sensor would therefore track the num-
ber of alerts a process generates, and whenever this number exceeds some thresh-
old, an alarm would be raised. It is this measure we report in the following
figures.

4.1 Per record

In the case of per record scoring and alerting, we define “Detection Rate” as
the percentage of all records (irrespective of the processes that generated those
records) labeled “malicious” that produced PAD scores below the threshold. The
“False Positive Rate” is the percentage of all test records labeled “normal” that
likewise produced PAD scores that were below the threshold.

We illustrate the different detection rates and false positive rates over differ-
ent threshold settings using ROC curves, with the data used to generate these
plots in accompanying tables.

0.034

0.033 -

0.032 |-

False Positive Rate

0.027 L L L L L
0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Detection Rate

Fig. 2. Per Record ROC curve for Detection Rate versus false Positive Rate in exper-
iment 1

13

Threshold|Detection| False

Rate [|Positive
1.3 1.000000 {0.033910
1.2 0.990196 |0.033695
1.1 0.990196 |0.033587
1.0 0.980392 |0.033266
0.9 0.970588 |0.033128
0.7 0.970588 |0.032739
0.6 0.960784 |0.031630
0.5 0.862745 |0.030258
0.4 0.843137 |0.028196
0.2 0.843137 |0.028088
0.1 0.823529 |0.027787

Table 1. Varying the threshold in Per Record detection and its effect on Detection
and False Positive Rate. Experiment 1, number of records: 92,003, number of malicious
records: 102

Threshold|Detection| False

Rate Positive
2.1 0.995441 | 0.084994
1.5 0.995441 | 0.077038
1.4 0.986322 | 0.074712
1.3 0.986322 | 0.074058
1.2 0.984802 | 0.071630
1.1 0.965046 | 0.069370
1.0 0.965046 | 0.066468
0.9 0.879939 | 0.063561
0.8 0.797872 | 0.061900
0.7 0.797872 | 0.059658
0.6 0.589666 | 0.050107
0.5 0.530395 | 0.041816

Table 2. Experiment 2: per-record detection. Number of records: 17338, number of
malicious records: 658

4.2 Per process

A process is identified as malicious if more than some minimum number of
records it generates is scored as an anomaly. This number is a second threshold.
We tested varying threshold levels applied to the PAD scores under different
thresholds governing the number of anomalous records used to generate a final
alert.

The decision process is evaluated by varying the percentage of anomalous
records that are generated by a process in order to raise an alert. For example,
a process might be considered malicious if it generates one anomalous record, or

14

False Positive Rate

L L L L L L L L L
05 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Detection Rate

Fig. 3. Per Record ROC curve for Detection Rate versus false Positive Rate in exper-
iment 2

0.1

False Positive Rate

L L L L
0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Detection Rate

Fig. 4. Per Record ROC curve for Detection Rate versus false Positive Rate in exper-
iment 3, total records: 14148, number of malicious records: 781

all of its records are anomalous, or some percentage of its records are deemed
anomalous.

The latter strategy requires some discussion. At any point during run-time,
we cannot know what records a process may yet generate in the future. Therefore,
we model a decision process that keeps track of the records generated by a
single process and whenever a specific percentage of the prior records scored as
anomalies, the process would generate an alert. For example, at any moment in
time, if 50% of the records of a an active process have generated an anomaly
score below the PAD score threshold, FWRAP generates an alert. We vary this
percentage in the following experiments from 10% to 80%.

The results indicate that the per-process detection logic provides better de-
tection rate and lower false positive rates compared to the per-record case. This
is not surprising as the same results were discovered in the RAD experiments [1].
This leads to the observation that a malicious process typically generates a con-

15

siderable number of anomalous events, while many normal processes occasionally
generate a few anomalous events.

Table 3, Table 4, and Table 5 detail the results on a Per Process basis.
The ROC curve are displayed in the accompanying figures. Note that the results
from experiment 1 are relatively better than those from experiments 2 and 3.
The primary reason concerns that amount of training performed during the
different experiments. Experiment 1 had far more training data establishing
the perhaps obvious point that as the sensor models more events its detection
accuracy increases.

In the first experiment implemented on the target machine, there were 5,550
processes generated during the 3 hour period. 121 processes were generated dur-
ing the attack period (i.e. the time between the initial launching of the attacking
exploits and the Trojan software execution after he gained root access). However,
only 22 processes generated during this time were spawned by the attack.

Threshold|Detection| False

Rate [|Positive
1.1 1.0 0.027090
1.0 0.954545 | 0.02727
0.9 0.909091 |0.026690
0.8 0.909091 |0.026345
0.7 0.863636 |0.025927
0.6 0.863636 |0.025381
0.5 0.772727 |0.023363
0.4 0.772727 10.021145
0.3 0.727273 |0.020981
0.2 0.727273 |0.020909
0.1 0.727273 10.020163

Table 3. Experiment 1, per-process detection. Number of processes: 5550, number of
malicious processes: 22

Many of the false positives were from processes that were simply not run as
a part of the training session but were otherwise normal file system programs.

False positives also occurred when processes were run under varying condi-
tions. Command shell execution and file execution of a new application caused
false positives to appear. Applications generate processes in different ways de-
pending upon their underlying system call initiation. Furthermore, programs
which require a network connection to run correctly caused a false alarm when
executed without a network connection. These false alarms arise because the
model has not seen behavior from all the different execution behaviors of a given
program.

16

Threshold|Detection| False
Rate |Positive
1.3 1.0 0.072485
1.2 0.972973 | 0.071741
1.1 0.972973 | 0.071145
1.0 0.972973 | 0.070104
0.9 0.972973 | 0.068616
0.8 0.972973 | 0.0675
0.7 0.972973 | 0.066532
0.6 0.945946 | 0.062961
0.5 0.945946 | 0.057553
0.4 0.945946 | 0.057328
0.3 0.918919 | 0.057276
0.2 0.918919 | 0.057180
0.1 0.918919 | 0.046897
Table 4. Experiment 2, per-process detection. Number of processes: 1344, number of

malicious processes: 37

Threshold|Detection| False
Rate |Positive

0.8 1.0 0.08889

1.7 0.98611 | 0.08850

0.6 0.97222 | 0.08647

0.5 0.86111 | 0.07732

0.4 0.80555 | 0.07544

0.3 0.79166 | 0.07498

0.2 0.79166 | 0.07357

0.1 0.77777 | 0.07107

Table 5. Experiment 3, per-process detection. Number of processes: 1279, number of
malicious processes: 72

5 Conclusions

By using file system access on a Linux system, we are able to label all processes
as either attacks or normal, with reasonably high accuracy and low false positive
rates. For the experiments performed in this study, we have shown that the file
system is a valuable audit point for a host-based IDS system.

We observe that file system accesses are apparently quite regular and well
modeled by PAD. Anomalous accesses are rather easy to detect. Furthermore,
malicious process behavior generates a relatively significant number of anoma-
lous events, while normal processes can indeed generate anomalous accesses as
well.

The work reported in this paper is an extension of our research on anomaly
detection. The PAD algorithm has been previously applied to network traffic,
as well as the Windows Registry, as described earlier in this paper. There are
a number of open research issues that we are actively pursuing. These issues

17

0.064

0.063 |

0.062 |-

0.061 |

False Positive Rate

0.059 |-

0.058 L L L L L L
0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Detection Rate

Fig. 5. Experiment 1, per-process ROC curve for Detection Rate versus false Positive
Rate.

False Postive Rate
o
o
2
G

L L L L L L L L
0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
Detection Rate

Fig. 6. Experiment 2, per process ROC curve for Detection Rate versus false Positive
Rate.

involve calibration, pruning, feature selection, concept (or environment) drift,
correlation and resiliency to attack.

Briefly, we seek automatic means of building anomaly detectors for arbitrary
audit sources that are well behaved, and are easy to use. With respect to cali-
bration, one would ideally like a system such as FWRAP, or RAD, to self-adjust
its thresholding to minimize false positives while revealing sufficient evidence
of a true anomaly indicative of an abuse or an attack. It is important to un-
derstand, however, that anomaly detection models should be considered part
of the evidence, and not be depended upon for the whole detection task. This
means anomaly detector outputs should be correlated with other indicators or
other anomaly detection models computed over different audit sources, different
features or different modeling algorithms, in order to confirm or deny that an
attack is truly occurring. Thus, it would be a mistake to entirely focus on a well
calibrated threshold for a single anomaly detector simply to reduce false posi-

18

False Positive Rate

O‘E 0}85 (;.9 O.‘QS 1
Detection Rate

Fig. 7. Experiment 3, per process ROC curve for Detection Rate versus false Positive

Rate

tives. It may in fact be a better strategy to generate more alerts, and possibly
higher numbers of false positives, so that the correlation of these alerts with
other confirmatory evidence reveals the true attacks that otherwise would go
undetected (had the anomaly detector threshold been set too low).

In the experiments run to date PAD produces fine grained models that are ex-
pensive in memory. There are several enhancements that have been implemented
in the Windows implementation of PAD for the RAD detector to alleviate its
memory consumption requirements. These include pruning of features after an
analytical evaluation that would indicate no possible consistency check violation
would be possible for a feature at run-time. Furthermore, most of the memory
structures used by the current implementation of PAD can be reimplemented
using Bloom Filters[4] to generate considerable compression advantages.

Finally, two questions come to most minds when they first study anomaly
detectors of various kinds; how long should they be trained, and when should
they be retrained. These issues are consistently revealed due to a common phe-
nomenon, concept (or environment) drift. What is modeled at one point in time
represents the “normal data” drawn from the environment for a particular train-
ing epoch, but the environment may change (either slowly or rapidly) which
necessitates a change in model.

The particular features being drawn from the environment have an intrinsic
range of values; PAD is learning this range, and modeling the inherent “variabil-
ity” of the particular feature values one may see for some period of time. Some
features would not be expected to vary widely over time, others may be expected
to vary widely. PAD learns this information (or an approximation) for the period
of time it observes the data. But it is not known if it has observed enough. RAD’s
implementation on Windows provides the means of automatically retraining a
model under a variety of user controlled schedules or performance measures.
RAD includes a decision procedure, and a feedback control loop, that provides
the means to determine whether PAD has trained enough, and deems when it

19

may be necessary to retrain a model if its performance should degrade. The same
techniques are easily implemented for FWRAP as well.

We intend to continue this line of research using the various audit sources we
have at our disposal, the FWRAP sensor, the focus of this paper, and the RAD
and Network traffic sensors that employ the PAD algorithm.

Another interesting open question is how one may protect the FWRAP sys-
tem from being tampered with. By storing the model on the kernel level, under-
neath the normal mount, the system would appear invisible to the overlying file
system, allowing the model to be protected from malicious users. It remains to
be seen how expensive an operation this may be.

Finally, another aspect of the malicious exploit problem (whether it is worm,
hacker,or malicious insider) not typically addressed concerns the forensic analysis
and recovery/repair of detected host abuses.

FWRAP is situated on the file system where it may record the actions taken
by a process detected as anomalous and possibly reverse the actions, if the
security policy dictates a mitigation strategy that includes not only detection
and reporting of events, but rollback and repair as autonomic operations.

There are of course at least two important issues, efficiency and resource
consumption when storing state information about the actions of an anomalous
file system access, and whether an action can be reversed safely.

FWRAP may generate alerts with a copy of the action (possibly also a copy
of the file object changed by the malicious action) for only those accesses deemed
anomalous. This will limit the resource consumption considerably, rather than
logging all accesses and operations. The utility of this feature depends upon the
accuracy of the anomaly detector however. Strategies that include perhaps a
fixed size ring buffer in which objects and operations are stored may make this
approach practical with almost no overhead.

5.1 Acknowledgment

We are grateful to Ke Wang and Erez Zadok for reading and suggesting changes
to improve the paper.

References

1. F. Apap, A. Honig, S. Hershkop, E. Eskin and S. Stolfo. Detecting Malicious Soft-
ware by Monitoring Anomalous Windows Registry Accesses. Fifth International Sym-
posium on Recent Advances in Intrusion Detection, RAID-2002. Zurich, Switzerland,
2002.

2. R. Balzer. Mediating Connectors. 19th IEEE International Conference on Dis-
tributed Computing Systems Workshop, 1994.

3. B. Bauer and T. Bowden. The /proc Filesystem. http://www.linuxhqg.com/kernel/
v2.2/1/Documentation /proc.txt. January 1999.

4. B. Bloom. Space/time trade-offs in hash coding with allowable errors. Communica-
tions of the ACM, Vol 13,Issue 7, 1970.

20

5. S. Forest, A. Hofmeyr, A. Somayaji and T. A. Longstaff. A sense of self for unix
processes, pages 120-128, IEEE Computer Society, 1996.

6. S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using sequences of
system calls. Journal of Computer Security, 6:151-180, 1998.

7. A. Honig, A. Howard, E. Eskin, S. Stoflo. Adaptive Model Generation: An Architec-
ture for Deployment of Data Minig-based Intrusion Detection Systems. Data Mining
for Security Applications, (Jajodia, Barabara, Eds.). Kluwer 2002.

8. C. Ko, G. Fink, and K. Levitt. Automated detection of vulnerabilities in privileged
programs by execution monitoring. 10th Annual Computer Security Applications
Conference, pages 134— 144, December 1994

9. K M.C. Tan and Roy A. Maxion. Why 67 Defining the Operational Limits of stide,
an Anomaly-Based Intrusion Detector.

10. W. Lee, S. Stolfo, and P.1 Chan. Learning Patterns from Unix Process Execution
Traces for Intrusion Detection. AAAI Workshop: AI Approaches to Fraud Detection
and Risk Management, July 1997

11. Okena Incore Architecture, http://www.okena.com/

12. Description of the Microsoft Windows Registry.
http://support.microsoft.com/?kbid=256986

13. Rosenthal. Evolving the Vnode Interface. Usenix Proceedings, pg 107-118, 1990.

14. Sana Security Profile Technology. http://www.sanasecurity.com

15. K. Timm, Strategies to Reduce False Positives and False Negatives.
http://online.securityfocus.com/infocus/1463

16. D. Wagner and P. Soto. Mimicry attacks on host based intrusion detection systems.
Ninth ACM Conference on Computer and Communications Security, 2002.

17. E. Zadok and Ion Badulescu. A Stackable File System Interface For Linux. Linux-
Expo 99. May 1999.

18. E. Zadok and Jason Nieh. FiST: A Language for Stackable File Systems. Usenix
Technical Conference. June 2000

19. E. Zadok, Ion Badulescu, and Alex Shender. Extending File Systems Using Stack-
able Templates. Usenix Technical Conference. June 1999. page 7.

20. E. Zadok. Stackable File Systems as a Security Tool. Columbia U. CS TechReport
CUCS-036-99. December 1999. page 5.

21. E. Zadok. Writing Stackable File Systems. Linux Journal , May 2003, pgs 22-25

22. O. Kreidl, and T. Frazier. Feedback Control Applied to Survivability: a Host-Based
Autonomic Defense System. IEEE Transactions on Reliability, Vol. 53, No. 1, March
2004.

23. P. A. Porras, M. W. Fong, and A. Valdes. A Mission-Impact-Based Approach to
INFOSEC Alarm Correlation. Proceedings Fifth International Symposium on Recent
Advances in Intrusion Detection, RAID-2002, 2002.

24. M. Schonlau, W. DuMouchel, W. Ju, A. F. Karr, M. Theus, and Y. Vardi. Com-
puter intrusion: Detecting masquerades. Statistical Science, 16(1):58-74, February
2001.

25. R. Maxion, and T. Townsend. Masquerade Detection Using Truncated Command
Lines. International Conference on Dependable Systems and Networks (DSN-02),
Washington, D.C.; 2002.

26. K. Wang and S. Stolfo. One-Class Training for Masquerade Detection. 3rd IEEE
International Conference on Data Mining, Workshop on Data Mining for Security
Applications, Florida, Nov., 2003.

